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A closed-form analytic solution for the motion of axisymmetric rigid pellets sus- 
pended in a Newtonian fluid and driven under a pressure gradient through a rigid 
impermeable cylindrical tube lined with a porous deformable biphasic wall layer is 
derived using mixture and lubrication theories. The analysis details the velocity dis- 
tributions in the lubrication and wall layers as well as the solid-phase displacement 
field in the wall layer. Expressions for the shear stress and pressure gradient are 
obtained throughout the lubrication and wall layers. Results are presented in terms 
of resistance, volume flow, and driving pressure relative to smooth-walled tubes for 
cases both with and without rigid spheres flowing in the free lumen. The analysis is 
motivated by its possible relevance to the rheology of blood in the microcirculation 
wherein the endothelial-cell glycocalyx - a carbohydrate-rich coat of macromolecules 
consisting of proteoglycans and glycoproteins expressed on the luminal surface of 
the capillary wall - might exhibit similar behaviour to the wall layer modelled here. 
Estimates of the permeability of the glycocalyx are taken from experimental data for 
fibrinogen gels formed in vitro. In a tube without pellets lined with a porous wall 
layer having a thickness which is 15% of the tube radius and having a permeability 
in the range of fibrinogen gels, approximately a 70% greater pressure drop is required 
to achieve the same volume flow as would occur in an equivalent smooth-walled tube 
without a wall layer. If, in the presence of this same wall layer, a rigid spherical pellet 
is introduced which is 99.5% of the free-lumen radius, the apparent viscosity increases 
by as much as a factor of four with a concomitant reduction in tube hematocrit of 
about 10% relative to the corresponding values in an equivalent smooth-walled tube 
having the same sphere-to-tube diameter ratio without a wall layer. 

1. Introduction 
The analysis presented here concerns a pressure-driven flow of rigid axisymmetric 

pellets in a cylindrical tube lined with a uniformly thick porous deformable wall layer. 
Attention is focused on the effect of the wall layer on the rheological behaviour of 
the system as a whole and on the interaction between the solid and fluid components 
of the wall layer. This study is concerned with the axial flow in the tube and the 
resulting axial deformations which develop in the wall layer. Interest in this problem 
is motivated by its rheological implications in the smallest blood vessels of the 
microcirculation, having diameters ranging between 4 and 10 pm. Red cells, which 
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have a characteristic diameter of 8 pm, experience a large range of deformations 
in these capillaries. As a result, complex fluid-structure interactions arise between 
the blood cells, plasma, and vessel walls. Most models of these dynamics assume 
smooth-walled impermeable tubes as an approximation for the capillary (Skalak & 
Ozkaya 1987; Skalak, Ozkaya & Skalak 1989; Secomb 1991, 1995). In fact, the 
luminal surface of the endothelial cells comprising the capillary wall is lined with 
a carbohydrate-rich coat or glycocalyx. The endothelial-cell glycocalyx consists of 
oligosaccharides covalently bound to glycoproteins and proteoglycans composed of 
long polysaccharide chains covalently bound to a protein core. In addition, plasma 
proteins such as fibrinogen and albumin can be adsorbed and thus contribute to the 
solid matrix of macromolecules which comprise the glycocalyx. 

The possible relevance of the glycocalyx to microcirculatory function was first 
considered by Copley and Silberberg (Lahav, Eliezer & Silberberg 1973; Krindel & 
Silberberg 1979; Copley 1974). Klitzman & Duling (1979) suggested the possible 
role a glycocalyx might play in accounting for the low volume fractions of red cells 
which they found in the capillaries of skeletal muscle. Desjardins & Duling (1990) 
observed a marked increase in the volume fraction of red cells within capillaries 
after in vivo microperfusion of enzymes directed against macromolecules comprising 
the glycocalyx. Based on their observations, they hypothesized that the glycocalyx 
could play a role in regulating red-cell volume fraction within microvessels. This 
hypothesis depends on a number of factors associated with the size and structure of 
the glycocalyx. Although the material properties are not precisely known, its thickness 
in vivo has been estimated to be on the order of 0.2 to 0.4 pm, or between 10 and 
20% of the radius of the smallest capillaries (Gretz 1995). Such a structure could 
have a significant influence on the resistance to blood flow in the microcirculation 
as well as on convection in near-wall regions, which in turn could influence material 
transport across the endothelial-cell membrane. Furthermore, the glycocalyx may 
serve to attenuate shear stress at the endothelial-cell membrane. It may also play a 
role in the mechano-transduction of flow and thus be involved in active metabolic 
processes such as autoregulation. 

The rheological behaviour of blood in the circulation is strongly dependent on 
scale, i.e. the size of its cellular components relative to the diameter of the vessel. 
Approximately 40% of the blood volume is taken up by deformable red cells with 
most of the remainder being occupied by blood plasma. The blood plasma itself is 
Newtonian and incompressible (Chien et al. 1966). At high rates of shear, whole blood 
behaves as a Newtonian fluid having an ‘apparent’ viscosity (proportional to the ratio 
of pressure drop to volume flow) which is dependent on hematocrit (volume-fraction 
of red cells in the blood). However, in tubes having diameters less than 300 pm, 
the apparent viscosity of blood is seen to decrease as the tube diameter decreases. 
This trend is attributed mainly to axial concentration which is associated with an 
inhomogeneous distribution of red cells over the cross-section of the tube. Axial 
concentration results in a plasma-rich zone in the marginal region of the tube and a 
cell-rich zone near the core. This configuration favours the regions of highest shear 
stress near the wall to be borne disproportionately by the relatively low-viscosity 
plasma. The result is a reduction in the apparent viscosity of the suspension as a 
whole relative to a uniform distribution of red cells over the vessel cross-section. 
The reduction in apparent viscosity with decreasing vessel diameter, referred to as 
the Fihrxus-Lindqvist effect, results in a minimum viscosity value (which depends 
on hematocrit) near the viscosity of plasma at a critical vessel diameter. Blood 
flow in still smaller vessels shows a marked increase in apparent viscosity with 
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decreasing diameter (reviewed by Pries, Neuhaus & Gaehtgens 1992). The reversal 
of the Fihrzeus-Lindqvist effect in the smallest capillaries is a result of the excessive 
pressures and enhanced viscous drag which develop in the small clearances that are 
available to the plasma that leaks back around the red cells. This behaviour has been 
well established for blood flow in glass tubes of varying diameter (Pries et al. 1992). 

Measurements of blood flow in vivo in large-scale microvascular networks together 
with theoretical network simulations were conducted by Pries et al. (1990, 1994). 
In their analyses, consideration is given to network effects such as heterogeneities 
which arise owing to phase separation at vessel bifurcations (plasma skimming) 
as well as local effects associated with the Fihrzeus effect (the reduction of tube 
hematocrit relative to discharge hematocrit with decreasing vessel diameter) and the 
Fihrzeus-Lindqvist effect. Their results were qualitatively similar to those found in 
glass tubes but dramatically higher apparent viscosities were necessary to account 
for the predicted resistances arising in vessels below 15 ym. For example, in 10 pm 
capillaries, the apparent viscosity of blood having a hematocrit of 45% is greater 
than in glass tubes of the same diameter by approximately a factor of four (Pries 
et al. 1994). This discrepancy was attributed to additional modes of dissipation, 
not considered in their analysis, associated with local interactions between the red 
cells and the capillary walls. They pointed to several possibilities which include (i) 
impeded flow in near-wall regions resulting in increased flow resistance owing to the 
presence of a glycocalyx, (ii) irregular cross-sectional geometries which may induce 
transient deformations of passing red cells resulting in increased viscous dissipation 
in the cell membrane, (iii) vessel bifurcations which result in entrance effects giving 
rise to enhanced dissipation relative to fully developed flow in straight tubes, and 
(iv) the presence of less deformable white cells in the microcirculation. In this 
analysis, we focus on the first explanation by considering a simplified model of the 
interaction between the endothelial-cell glycocalyx and blood. The macromolecules of 
the glycocalyx may serve to retard plasma flowing in near-wall regions of microvessels 
and thereby require increased driving pressure to achieve the same volume flow as 
would occur in smooth-walled vessels. 

To gain insight into the hydroelastic interaction between the endothelial-cell glyco- 
calyx and blood, we consider an idealized system consisting of a rigid impermeable 
cylindrical tube having a uniform circular cross-sectional area and lined, on its lu- 
minal surface, with a uniformly thick porous deformable wall layer. The wall layer 
is modelled as a biphasic mixture consisting of a linearly elastic solid phase and a 
linearly viscous fluid phase. A hydrodynamic pressure-driven flow of a Newtonian 
incompressible fluid is considered for cases both with and without closely fitting rigid 
axisymmetric pellets flowing in the free lumen (i.e. the ‘core region’ of the tube that 
does not contain the wall layer). The pressure, velocity, and displacement fields are 
found in closed form throughout the lubrication and wall layers. 

Wang & Parker (1995) studied the effect of deformable porous layers in a system 
under hydrostatic pressure in which a heavy rotating rigid sphere falls through a 
cylindrical tube filled with a quiescent fluid. Their analysis considered a porous layer 
on both the sphere and tube wall as well as eccentricities of the tube and sphere axes. 
The similarity with this work lies in the conservation equations governing the wall 
layer and the use of lubrication theory for the fluid in the gap between the pellet 
and the wall layer. In their analysis, Wang & Parker argued that when the length 
scale of velocity variations in the wall layer is small compared with the clearance in 
the lubrication layer, the effect of the wall layer can be replaced by a slip boundary 
condition at the interface with the lubrication layer. Their analysis, therefore, does not 
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detail the velocity distribution in the wall layer. Furthermore, owing to the limitations 
of two-dimensional lubrication theory which they employed, the lubrication zone 
did not extend over the entire length of the sphere but was limited to a region on 
either side of the sphere’s equator where the variation in its thickness remained small 
relative to its length. In the current analysis we employ axisymmetric lubrication 
theory, extending the range of pellet clearances (see $5.2), and, most importantly, 
consider a pressure-driven flow of pellets which is directly relevant to the problem of 
capillary blood flow. 

The governing equations for the fluid in the free lumen and in the gap between 
the surface of the pellet and the wall layer are derived assuming a Stokes flow 
approximation. Furthermore, when pellets are considered, axisymmetric lubrication 
theory is assumed to be valid in the gap or lubrication layer between the pellet and the 
wall layer. Justification for this approximation and the so-called ‘zero-drag’ condition 
for neutrally buoyant rigid axisymmetric pellets in cylindrical tubes (see $5.2) has 
been well established (Wang & Skalak 1969; Tozeren & Skalak 1978; Secomb et 
al. 1986). The governing equations and boundary conditions for the wall layer are 
derived following methods employed by Mow and coworkers (Mow et al. 1980; Lai 
& Mow 1980; Hou et al. 1989, 1990) in their work on cartilage. They employed 
continuum mechanics of heterogeneous materials described by Truesdell & Toupin 
(1960) to characterize the multiphasic behaviour of cartilage. An important feature of 
mixture theory is its ability to account for the interaction between phases manifested 
by a momentum supply force. The momentum supply is the internal interaction 
force exerted on one phase by all the other phases in the mixture. It is related to 
kinematic field variables (such as the deformation and velocity) of each component in 
the mixture by way of a constitutive relationship that uniquely defines its behaviour. 
Depending on the constitutive laws which are chosen, very different physics can arise 
as a result of the interaction between phases from that which could arise from any 
one of the phases acting separately. The momentum supply force and the boundary 
conditions for the mixture are the salient features which distinguish this analysis from 
a simpler viscoelastic model of the wall layer. 

In the three sections that follow, the conservation equations and boundary condi- 
tions are derived in a generalized vector-invariant form. The model is expressed in 
axisymmetric cylindrical coordinates in $5 and the cases with and without axisym- 
metric rigid pellets flowing in the free lumen are considered separately. The analysis 
is kept general in recognition of its inherently crude approximation to capillary blood 
flow while bearing in mind its possible applicability to other biological phenomena 
and/or engineering systems unrelated to microcirculation. Results are given in $6 in 
terms of driving pressure and volume flow relative to systems without wall layers for 
the special case of rigid spheres. Finally, $7 discusses the implications of the model in 
the rheology of the microcirculation. 

2. Mixture theory for the biphasic wall layer 
The equations governing the biphasic wall layer must satisfy the conservation of 

mass and momentum. These equations can be obtained for each constituent as well 
as for the mixture as a whole. It is convenient to express the conservation of mass in 
terms of a continuity equation for the mixture whereas the momentum equations are 
best expressed in terms of a system of conservation equations corresponding to each 
constituent in the mixture. Upon writing the equations of balance, we must specify 
constitutive equations relating the stresses to the deformation and other kinematical 
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quantities in the system. The stress tensors for each constituent are formulated in 
much the same way as they are for a single-phase material without regard to internal 
interaction forces. Finally, the constitutive relationship for the momentum supply 
must be specified and may depend on variables associated with both phases. The 
reduced equations are obtained by combining the constitutive relationships with the 
conservation equations resulting in a system of differential equations of motion for 
the mixture. 

2.1. Conservation of mass 
We model the wall layer as a biphasic mixture consisting of a solid phase, having 
density ps and volume fraction @, and a fluid phase, having density pf and volume 
fraction 4f, subject to the constraint that @ + 4f = 1. As is commonly assumed for 
biological tissues, both phases will be taken separately to be intrinsically incompress- 
ible such that the material derivative of p" /@ vanishes (where a = s,f). Applying 
an integral mass balance to the ath constituent occupying a material region of space 
and using the divergence theorem we obtain (under steady-state conditions) 

v * (p"u") = 0 (2.1) 

where ua is the velocity vector of the ath constituent. Imposing the condition of 
intrinsic phase incompressibility on each of the constituents allows us to express the 
continuity equation in terms of the volume fraction such that 

v - ( p U a )  = 0. 

v - (YUS + @Uf) = 0. 

(2.2) 

(2.3) 

Summing (2.2) over both phases we obtain 

2.2. Conservation of momentum 
In the steady state, the conservation of momentum for each constituent is given by 

v -os  +7T = 0 (2.4) 

and 

V * a f  -7T = o  
where oa is the Cauchy stress tensor for the ath phase and 7~ is the momentum supply 
per unit volume. The momentum supply vector represents an internal interaction force 
which arises between the two phases in the mixture. In order that the momentum 
of the total mixture is conserved, the momentum supplied by one constituent must 
balance the momentum supplied by the other (Truesdell & Toupin 1960). 

2.3. Constitutive equations 

For the purposes of this analysis, we restrict our attention to linear infinitesimal 
theory. Considering both phases to be isotropic, we model the biphasic wall layer as 
consisting of a linearly elastic solid, having a shear modulus ps and a Lami coefficient 
As, and a Newtonian viscous fluid having a dynamic viscosity pf. The constitutive 
relations for the stress tensors of the solid and fluid phases are given respectively by 

oS = -@pl  + nyv * us)/ + 2pSES (2.6) 

and 

af = -&r - p ( v  * uf)/ + 2 p b f  (2.7) 
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where p is the pressure and E s  and Df are the deformation and rate of deformation 
tensors, respectively. They are defined as follows : 

E s  = ~ ( V U ’  + (VU’)’) , Df = ;(Vvf + ( V V ~ ) ~ )  

where us is the displacement vector of the solid phase. In (2.7), we have made use 
of the Stokes hypothesis and neglected the bulk viscosity of the fluid constituent 
by taking Af = -$pf. The remaining constitutive relation involves the momentum 
supply. Following Hou et al. (1990), we model the force of interaction per unit volume 
as being related to the velocity difference between phases such that 

7t = pV@ + K ( v f  - US) (2.8) 

where K is the hydraulic resistivity of the biphasic wall layer. The hydraulic resistivity 
refers to the pressure drop necessary to achieve a unit volume flow of a specified fluid 
through a permeable material of unit cross-sectional area and unit thickness (Levick 
1987). Lai & Mow (1980) refer to this quantity as the diffusive drag; however, since 
it characterizes the drag associated with permeation and not with diffusion, we adopt 
the hydraulic resistivity as a more descriptive term. 

2.4. Reduced equations for a deformable porous wall layer 
Substituting the constitutive relations (2.6), (2.7), and (2.8) into the momentum 
equations given by (2.4) and (2.5), and making use of the constraint that @ + @ = 1, 
we obtain 

and 
(2 + pS)V(V - US) + psv2us = p7vp + K(VS - v f )  

f p f V ( V  * vf) + pfV2vf = 4fVp + K ( v f  - u s )  

(2.9) 

(2.10) 

where V 2  is the vector Laplacian defined as V(V. ) - Vx(Vx ). Equations (2.9) 
and (2.10) taken together with the continuity equation given by (2.3) constitute the 
reduced governing conservation equations given by the field theory. 

3. Stokes flow in the free lumen 

we apply the Stokes equations of motion and the equation of continuity given by 
Modelling the fluid in the free lumen of the tube as Newtonian and incompressible 

(3.1) 

(3.2) 

1 2 1  p v v  =vp 

v * v  1 = o  
and 

where v’ is the velocity vector of the fluid in the free lumen of the tube and p‘ is 
fluid’s dynamic viscosity. Note that in the absence of pellets, the Stokes equations 
reduce to a Poiseuille flow in the free lumen of the tube. 

4. Boundary conditions 
Applying the governing conservation equations of heterogeneous material continua 

(Truesdell & Toupin 1960) across surfaces of material discontinuity, Hou et al. 
(1989) derived boundary conditions at the interface between multiphasic mixtures 
and homogeneous materials. As shown by Hou et al. (1989), if, at the interfacial 
surface, r ,  between a fluid and a biphasic mixture, the relative velocity, vf  - us, 



Pressure-driven f low of pellets in porous-walled tubes 169 

is tangent to r ,  then the volume-weighted sum of the constituent velocities must 
equal the velocity of the fluid on r .  This is what they termed the pseudo-no-slip 
condition. Furthermore, the stress-traction vector, n-o', lying in the interfacial surface 
associated with the ath phase must equal the volume fraction of that phase times 
the stress-traction vector of the fluid on f .  Thus we impose the following boundary 
conditions at the interfacial surface, r ', separating the biphasic wall layer from the 
fluid in the free lumen: 

@US + $fvf = v', x E r', (4.1) 

n . a S  = yn-o', x E r',  (4.2) 

n - o f  = $ f n * o ' ,  x E f'.  (4.3) 
and 

Notice that if we sum (4.2) and (4.3), we obtain n - (as + of) = n - o' on x E f ' which 
states that the stress-traction vector of the mixture taken as a whole must equal the 
stress traction vector of the fluid at the interfacial surface, f '. 

At the other interfacial surface, r", separating the biphasic wall layer from the 
rigid tube wall, we require that the velocities of the fluid and solid phases are equal 
to each other and to the velocity of the rigid tube wall. Thus we impose the condition 
that 

v S = v f = v W ,  X E f W  (4.4) 
where vw is the velocity of the tube wall. Finally, we must impose the no-slip condition 
on the fluid at the surface, f P, of the rigid pellet by requiring that 

v = u p ,  X E f P  (4.5) 
1 

where U P  is the velocity of the pellet. 

5. Problem for the deformable porous wall layer with an axisymmetric axial 
flow 

In the problem we will consider for the remainder of this analysis, we restrict our 
attention to a one-component axisymmetric axial flow field. This approximation is 
reasonable for circular-cylindrical tubes having a uniform cross-sectional radius, R, 
and a uniformly thick deformable wall layer. For this geometry we first consider the 
problem of a simple Newtonian fluid, free of pellets, flowing in the free lumen. This 
is similar to the classical Beavers-Joseph problem (Beavers & Joseph 1967; Hou et 
al. 1989) except we will be using axisymmetric cylindrical coordinates, r and z .  Next 
we consider the flow of rigid axisymmetric pellets which nearly fill the free lumen of 
the tube. For reasons discussed later, relating to the limitations of the infinitesimal 
theory used here, we will only consider pellets with diameters strictly less than the 
diameter, a, of the free lumen. 

Figure 1 shows a schematic of a rigid cylindrical tube lined with a deformable 
porous wall layer. The tube contains a Newtonian fluid driven by an imposed 
pressure gradient. If pellets are flowing in the free lumen, the pressure gradient will 
vary through the lubrication and wall layers as a function of z ,  whereas sufficiently 
far away from pellets or in pellet-free flow, the pressure gradient remains constant. 
Thus, for a uni-directional axisymmetric axial flow the non-vanishing steady-state 
field components are the velocities, v! = v,f(r,z)  and vi = vi(r ,z) ,  the deformation, 
us = us(r,z) ,  and the pressure, p = p(z) .  



170 E. R. Damiano, B. R. Duling. K .  Ley and T. C. Skalak 

FIGURE 1. Schematic of an impermeable rigid cylindrical tube lined with a deformable porous 
wall layer. The two cases considered include a Newtonian fluid flowing in the free lumen driven 
by an imposed pressure gradient (case I)  and a pressure-driven flow of rigid axisymmetric pellets 
suspended in a Newtonian fluid (case 11). Only pellets with diametcrs strictly less than the diameter 
of the free lumen are considered. The free-lumen radius a and the tubc radius R characterize the 
dimensionless wall-layer thickness, 1 - a / R  = 1 - a. The maximum pellet radius is given by a& 
where lo < 1 and the curve describing the surface of the pellet is defined parametrically by the 
function a i ( z )  where 0 < A ( z )  < j.0. For axisymmetric flow, r and 2 are cylindrical coordinates 
which are defined on 0 < r < R and -co < z < co for case I and d ( z )  < r < R and -a& < z < a& 
for case 11. 

5.1. Cusc I: Newtonian fluid flowing in tube - Poiseuille $ow in j - ee  lumen 

For a Newtonian fluid flowing in the tube, the pressure gradient is constant and the 
field equations for the biphasic wall layer, given by (2.9), (2.10), and (2.3), thus reduce 
to the following scalar form: 

and 

au;  av; 
z z  a Z  

- = 0, 

where we have made the approximation u; 

a < r < R  (5.3) 

= i7u:/dt = 0 which is consistent with 
i. 

the infinitesimal-strain theory we have employcd. Notice that for constant volume 
fractions, the momentum equation for the fluid phase in the w7all layer, given by 
(5.2), is uncoupled from that of the solid phase. Furthcr notice that if the drag of 
interaction between phases in the wall layer is large compared to viscous effects, and 
the Laplacian term on the left-hand side of (5.2) is neglected, the mixture theory 
reduces to Darcy's law in which the fluid vclocity in the wall layer is constant and 
proportional to the prcssure gradient. The fluid in the free lumen is governed by 
Poiseuille's equation and is given by 

with the continuity equation given by 
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The boundary conditions involving the stress tractions at the interface, r ', between 
the free lumen and the porous wall layer, given by (4.2) and (4.3), reduce to 

while the pseudo-no-slip condition on r', given by (4.1), reduces to 

v;(a) = @fv;(a). (5.7) 

The remaining boundary condition, given by (4.4), is the no-slip condition at the 
interface, r", between the porous wall layer and the rigid tube wall. It reduces to 

u i (R)  = 0 and v,f(R) = 0. (5.8a,b) 

Non-dimensionalizing, we define F = r / R ,  and the dimensionless displacement and 
velocities as 

We further introduce the following dimensionless quantities 

(5.10) 

where 6 represents the ratio of viscous drag forces to hydraulic resistance forces in 
the wall layer and -y represents the weighted viscosity ratio of the fluid in the free 
lumen to the fluid in the wall layer. The solutions to (5.1), (5.2), and (5.4) subject to 
the boundary conditions above are 

(5.11) 

and 

u"'(F) Kl(a/d) Io(./S) - PKo(a/G) Ko(a/S)  

4f 
- = --y 62 { (-K 26 + Ko( l I4  -) 11(a/4 + PKl(E/J) +--I} Ko(l/S) 

+:(a2 - T2), 0 < F < a, (5.13) 

where /? = Io( 1/6)/Ko( 1/6). Here, lo and KO are, respectively, the modified zeroth- 
order Bessel functions of the first and second kind and II and K 1  are the modified 
first-order Bessel functions of the first and second kind. 

5.2. Case 11: Rigid pelletsflowing in free lumen - axisymmetric lubrication theory 
Some of the earliest attempts to describe the flow of deformable red cells through 
capillaries using lubrication theory were made by Lighthill (1968) and Barnard, Lopez 
& Hellums (1968). Lighthill applied two-dimensional lubrication theory to elastic 
compressible pellets forced through elastic distensible tubes filled with a pressure- 
driven Newtonian incompressible fluid. Fitz-gerald (1969) extended Lighthill's work 
and considered both the axisymmetric and asymmetric cases as well as the effect of 
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a porous capillary wall. Secomb et al. (1986) pointed out that lubrication theory 
yielded very accurate results for rigid spheres when compared with exact solutions 
of the Stokes equations obtained in the form of series expansions by Wang & 
Skalak (1969). These closed-form series solutions provided the radial and axial 
velocity components of a creeping axisymmetric viscous flow containing a line of 
spherical particles. The pressure drop across the sphere predicted by axisymmetric 
lubrication theory was shown by Secomb et al. (1986) to agree closely with the 
exact solution of Wang & Skalak (1969) even for spheres with diameters as small 
as 60% that of the tube diameter. They further argued that lubrication theory 
should yield still better approximations for more elongated pellets since the ratio of 
the thickness of the lubrication layer to its length would then be smaller than for 
spheres. By comparison, they showed that two-dimensional lubrication theory yields 
results which are accurate only for spheres with diameters greater than 90% of the 
tube diameter. 

The introduction of a pellet has the important implication that the pressure and 
velocity become functions of the axial coordinate, z. Although we admit z-dependence 
into our velocity field, we still invoke the approximation from lubrication theory that 
derivatives with respect to z are small compared with their corresponding derivatives 
in the r-direction, provided the lubricating layer is sufficiently thin compared with 
its length. As in the case without pellets, therefore, we still make the approximation 
that the Laplacian in (2.9), (2.10), and (3.1) depends only on r and is independent 
of z in the axisymmetric case. This approximation is reasonable even near the 
leading and trailing edges of the pellet where the lubrication layer may become 
quite large. This is because the pressure in these regions is typically small by 
comparison to values it assumes in regions where the gap is thinnest. Admitting z- 
dependence into the pressure gradient and velocity fields adds considerable algebraic 
complexity to the problem; however the closed-form analytic solution still remains 
tractable. 

We may now formulate the problem of a pressure-driven flow of rigid pellets in the 
free lumen. In keeping with our assumption of small deformations of the solid phase 
in the wall layer, we consider only those pellets with diameters strictly less than the 
diameter of the free lumen. Thus, for pellets defined parametrically by the function 
a;l(z), we require 0 < L(z )  < 1 (in the case of a sphere, a i ( z )  = ;lo(a2 - Z ~ / A ; ) ” ~ ,  where 
io is the maximum sphere radius relative to the free-lumen radius, a). The boundary- 
value problem just considered is applicable to the problem with pellets if we invoke 
the additional boundary condition, given by (4.5), which states that the fluid velocity 
on the surface of the pellet must equal the pellet velocity, and replace the continuity 
equations, given by (5.3) and (5.5), with the integrated form of the continuity equation 
with respect to the cross-section of the tube. Thus the boundary-value problem with 
rigid pellets is defined by the momentum equations given by (5.1), (5.2), and (5.4) 
(where the radial coordinate in (5.4) is defined when a;l(z) < r < a). The boundary 
conditions are given by (5.6)-(5.8), with the additional no-slip condition on the pellet 
surface given by 

uf(a;l(z), z )  = 00, (5.14) 

and the continuity equation is given by 

Rqo = ; v ~ ( a L ) ~  + uf(r, z )  r dr + $f (5.15) 

Here we define uo as the velocity of the pellet and 40 as the total volume flow per 
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unit tube circumference at an arbitrary cross-section of the tube. The first term on 
the right-hand side above represents the volume flow of the solid pellet as a function 
of z.  The second and third terms correspond to the volume flow of fluid in the 
lubrication and wall layers, respectively. Since this fluid is assumed incompressible, 
the total volume flow, qo, which remains an unknown quantity, is necessarily constant 
and therefore independent of z. 

The statement of the boundary condition on the pellet given by (5.14) is consistent 
with choosing a frame of reference attached to the tube wall. Most analyses of 
capillary blood flow attach the reference frame to the pellet (Lighthill 1968; Tozeren 
& Skalak 1978; Secomb et al. 1986) resulting in a truly steady-state problem. In 
such a reference configuration the volume of fluid that leaks back around the pellet 
is constant at every cross-section whereas in the configuration we have chosen, the 
leakback depends on z and is given by the sum of the second two terms on the 
right-hand side of (5.15), representing the difference between the total volume flow, 
Rqo, and the local volume flow of the sphere, ivo(a/2)2. Attaching a frame of reference 
to the tube wall results in a simpler constitutive relationship for the wall layer. 

The integration constant, qo, arising from the continuity equation given by (5.15) 
may be determined by applying a force balance to a control volume over a section of 
the tube containing the sphere. For neutrally buoyant pellets, we impose the so-called 
'zero-drag' condition (Lighthill 1968; Tozeren & Skalak 1978). This may be stated as 
follows: from a control-volume analysis on a steady Stokes flow, and in the light of 
the fact that a neutrally buoyant pellet can exert no net external force on the control 
volume, we impose the condition of zero drag on the pellet by requiring that, in the 
lubrication and wall layers bounded by the leading and trailing edges of the pellet, 
the total pressure drop across the pellet must exactly balance the resultant of the 
total shear stress acting on the tube wall. This condition is given by 

(5.16) 

where z2 and z1 are the coordinates corresponding to the leading and trailing edges 
of the pellet, respectively, and z, = ( z , , ) I , = ~  is the shear stress on r", the interface 
between the biphasic wall layer and the rigid tube wall. In general, the shear stress, 
zTz, in the lubrication and wall layers is given by 

(5.17) 

Notice that the shear stress in the wall layer, corresponding to the second expression 
above, represents the total shear stress and is therefore the sum of the stresses in 
both phases of the mixture. This is consistent with the reasoning which led to the 
formulation of the boundary conditions given by (4.2) and (4.3). 

With the foregoing statement of the problem just defined, we may write the solution 
to the fluid velocity in the wall and lubrication layers, governed by (5.2) and (5.4), 
respectively, as 
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(5.19) 

where A(z), B(z) and C(z) are arbitrary functions of integration, and the pressure, p, 
is as yet an unknown function of z. In addition to the pressure, the other fundamental 
mathematical distinction between the problem with pellets and the problem without 
is the inclusion of the logarithmic term in (5.19) which satisfies (5.4). This term was 
not admissible in the solution to the pellet-free problem owing to the logarithmic 
singularity which arises as Y approaches zero. Since Y does not vanish on the surface 
of the pellet (except at the two points corresponding to the leading and trailing edges 
of the pellet), the logarithmic term remains bounded in the lubrication and wall layers 
and must appear, in addition to the quadratic term, as the other linearly independent 
solution. 

The solution to the solid-phase displacement of the wall layer, u;(T",z), is a combi- 
nation of the solutions (5.18) and (5.19) which must be made to satisfy the differential 
equation and boundary conditions pertaining to uz. As with u i ,  the solution form 
for ui is similar to the solution without pellets, given by (5.11), with the addition of 
the logarithmic term. This term is admitted since lnr" appears in (5.19), is a solution 
to the differential equation given by (5.1), and vanishes at the boundary r" = 1, thus 
satisfying the no-slip boundary condition given by (5.8~).  Imposing the remaining 
boundary condition on u: given by (5.6a), we obtain the solution for the solid-phase 
displacement of the wall layer given by 

B(z)lnr" - u:(r",z) , a < r" < 1. (5.20) 
R2 dp 
4ys dz 

u;(r",z) = ---(1 - r "2)  + - 

The expression given by (5.18) for the fluid-phase velocity in the wall layer was 
made to automatically satisfy the no-slip condition given by (52%) when r" = 1. 
Imposing the three remaining conditions, i.e. the two pertaining to the fluid phase at 
the interface between the wall and lubricating layers, given by (5.6b) and (5.7), and 
the no-slip condition on the pellet surface, given by (5.14), we obtain the following 
expressions for the arbitrary functions of integration in terms of the unknown pressure 
gradient : 

uo X2 R2dp  
X i  X i  pf dz 

A(z) = - + ---, 
x3 R2 dp 
XI p f  dz' 

B(z) = -uo+ (F -x4) -- 
R2 dp 

(5.21) 

(5.22) 

(5.23) 
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Imposing the integral form of the continuity equation, we substitute (5.18) and (5.19) 
into (5.15). Collecting quantities in terms of the pressure gradient we obtain the 
following Reynolds equation for rigid pellets flowing through a rigid tube lined with 
a porous wall layer: 

+- x2x5 + X 6 ]  } 
X1 

(5.24) 

where the domain of the inner products appearing in (5.24) is defined with respect to 
the cross-sectional area of the wall layer such that 

(1,Io - BKo) = 1 (Zo(r"/S) - PKo(r"/S)) Fdr". (5.25) 

Thus, for a specific axisymmetric pellet shape, A(z), the Reynolds equation, given 
by (5.24), is known to within an arbitrary constant, 40. In order to determine this 
constant, we apply the zero-drag condition given by (5.16). First we must determine 
the shear stress acting at the interface between the biphasic wall layer and the rigid 
tube wall. From (5.17), the shear stress acting in the lubrication and wall layers is 
given by 

1 1 

(1,Ko) = 1 Ko(r"/S)r"dr", 

The shear stress at the wall, zw, is therefore given by 

RdP PI z,(z) = -- + -B(z). 
2 dz R 

(5.26) 

(5.27) 

In the light of this relationship, application of the zero-drag condition given by (5.16) 
provides an implicit expression for the total volume flow, qo, given by 

l: B(z)dz = 0. (5.28) 

Recall that B ( z )  depends on the pressure gradient, dpldz. For the sake of brevity, 
we define the functions f(z)  and g(z) such that the right-hand side of (5.24) may 
be expressed as VO{& - f(z))/g(z), where Qo = qo/Rvo is the dimensionless volume 
flow. Substituting B(z) ,  given by (5.22), into the above expression for the zero- 
drag condition, we obtain the following equation for the dimensionless volume flow, 
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Qo, determined explicitly in terms of the shape of the axisymmetric rigid pellet, 
A(z) : 

(5.29) 

Specification of an axisymmetric pellet shape (having a maximum radius strictly less 
than the radius of the free lumen) provides the dimensionless volume flow, Qo, given 
by (5.29), which in turn provides the necessary constant that renders the pressure, 
velocity, and deformation fields, given by (5.18), (5.19), (5.20), and (5.24), as the 
unique analytic closed-form solution to the boundary-value problem put forth. 

6. Results with and without close-fitting rigid spheres 
Figure 2 shows the dimensionless displacement and volume-weighted velocity pro- 

files, 2, Cf, and E l / @  given by (5.11)-(5.13) for flow of a Newtonian fluid through a 
tube lined with a porous deformable wall layer as a function of r“ for two values of the 
dimensionless wall-layer thickness (1 - a = 0.5 on the left and 0.2 on the right) and 
four values of the reciprocal dimensionless wall drag, d2. The velocity components are 
normalized relative to the centreline velocity of the Poiseuille distribution that arises 
under the same pressure drop in the absence of a wall layer. The curves correspond 
to a weighted viscosity ratio, y, of 0.98, and a fluid volume fraction, +f, of about 
0.99, implying a uniform viscosity throughout the tube (p’ = pf). In the velocity 
profiles of figure 2(a,b), we see that as the drag associated with permeation increases 
relative to the viscous drag (i.e. as d2  tends toward zero), the velocity profile in the 
wall layer tends to become more uniform with a boundary layer or transitional region 
developing at the interface between the wall layer and the fluid in the free lumen. This 
behaviour could be anticipated by examination of the equation modelling the fluid 
phase in the wall layer given by (5.2). As the hydraulic resistivity term becomes large 
and overwhelms the effect of the viscous dissipation term, the model governing the 
fluid phase approaches Darcy’s law, which predicts a constant velocity field propor- 
tional to the uniform pressure gradient. Alternatively, as the viscous drag in the wall 
layer becomes large relative to the drag associated with permeation (i.e. as d 2  becomes 
large), the velocity profiles in (a)  and (b )  approach a Poiseuille distribution. As we see 
from (5.2), when the viscous dissipation term becomes large relative to the hydraulic 
resistivity term, Poiseuille’s equation is recovered in which the pressure gradient is 
scaled by the porosity, 4f. Thus we see a parabolic velocity profile emerging in the wall 
layer as d2 becomes large. The dimensionless velocity profile for a Poiseuille flow with 
no wall layer corresponds to the parabola shown by the dotted curve in (a)  and (b).  

Figures 2(c) and 2(d) show the dimensionless displacement profiles, in the absence 
of pellets, of the solid phase in the wall layer for four values of d2. As d2  becomes 
small, the hydraulic resistivity begins to dominate over viscous dissipation and the 
deformation of the solid phase in the wall layer increases. Since the permeability (hy- 
draulic conductivity) is inversely proportional to the hydraulic resistivity, it decreases 
with decreasing d2. For a constant pressure gradient, as the permeability decreases, 
the fluid phase becomes more difficult to force through the solid matrix, resulting in 
enhanced deformation of the solid phase. Alternatively, one could argue that since 
the shear stress in the fluid phase decreases with decreasing d2, as evidenced by the 
corresponding velocity gradients in ( a )  and (b),  the stress must be borne to a greater 
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FIGURE 2. Normalized volume-weighted fluid velocity profiles in the wall layer (shaded region) and 
frec lumen, ( a )  and (h ) ,  and dirncnsionless solid-phase displacement profiles in the wall layer, (c) 
and (d), for a Newtonian fluid flowing in the tube, corresponding to four values of the reciprocal 
dimensionless wall drag, a2. The dimensionless wall-layer thickness, 1 - c(, is 50% in (a) and ( c )  
and 20% in ( b )  and (d). The Poiseuille profile m-hich would arise in the absence of a wall layer is 
shown by the dotted parabola in (a) and (b) .  The velocity profiles are normalized relative to the 
centreline velocity of the Poiseuille distribution that arises under the same pressure drop without a 
wall layer. The solid-phase displacement in the wall layer is non-dimensionalized with respect to 
R’(-dp/dz)/$’p’. The porosity, $f, is 0.99 and the viscosity is takcn to be uniform throughout the 
free lumen and wall layer (i.e. 7 = 0.98). 
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FIGURE 3. Volumetric flow rate in a tube lined with a porous wall layer without pellets, relative to 
a Poiseuille flow in a rigid tube of radius R, is shown as a function of the reciprocal dimensionless 
wall drag, S2,  for five dimensionless wall-layer thicknesses (1 - ct = 0.1, 0.2, 0.3, 0.4 and 0.5). As the 
permeability tends toward zero, the flow in the wall layer also approaches zero. In the limit of zero 
permeability, the entire volume flow is constrained to a Poiseuille flow in the free-lumen region of 
the tube’s cross-section. According to Poiseuille’s law, the five curves asymptote to the fourth power 
of the dimensionless free-lumen radius, ct. All parameters as in figure 2. 

extent by the solid phase in the mixture. Thus, the deformation and deformation 
gradients of the solid phase increase as d 2  tends toward zero. 

Since the porous wall layer lines the tube wall, it occupies the outer-most regions 
of the cross-sectional area, and even a thin layer can retard a significant volume 
of fluid, provided the hydraulic resistivity is sufficiently large. Figure 3 shows the 
volumetric flow rate plotted as a function of d2, the reciprocal dimensionless wall 
drag, for five different values of the dimensionless wall-layer thickness, 1 - a. As the 
dimensionless wall drag, 1/d2, becomes large (i.e. as d2 tends toward zero), the porous 
wall approaches a rigid wall, decreasing the effective cross-sectional radius by the 
thickness of the wall layer. Since the volumetric flow rate for a Poiseuille distribution 
is proportional to the fourth power of the tube radius, we anticipate a lower bound 
on the volumetric flow rate of a4 = a4/R4 which corresponds to the lower asymptotes 
associated with the curves in figure 3. In the other limit, as the drag due to permeation 
becomes small relative to the viscous drag (i.e. as d 2  becomes large), we see that, 
for a given porosity, the dimensionless volumetric flow rates asymptote to values 
which depend upon the thickness of the wall layer. The dependence of these upper 
asymptotes on wall-layer thickness and porosity results from the fact that the solid 
phase occupies volume in the wall layer and thus reduces the cross-sectional area of 
the tube that is available to fluid flow relative to a tube of equivalent diameter without 
a wall layer. For a given porosity, this volume exclusion increases with increasing wall- 
layer thickness resulting in a decreased upper asymptote. Alternatively, for a given 
wall-layer thickness, these asymptotes increase with increasing wall-layer porosity. 
In the limit as the solid volume fraction approaches zero, the upper asymptotes in 
figure 3 would all coincide with unity, independent of the wall-layer thickness just 
as they would in the limit of a vanishing wall-layer thickness for any given value of 
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Fluid velocity/sphere velocity Fluid velocity/sphere velocity 
FIGURE 4. Normalized volume-weighted fluid velocity profiles in the wall layer (shaded region) and 
lubrication la)-er which arise in the presence of a rigid sphere flowing in the free lumen. The velocity 
profiles, normalized with respect to the sphere velocity, are shown at  three axial locations in z and 
for two dimcnsionlcss wall-layer thickncsscs (20% on the left and 10% on the right). The solid ( ) 
and dashed (- - ) curves correspond to a reciprocal dimensionless wall drag of 6' = 0.001 and 
0.01, respectively. The dotted curves (- - - - -) correspond to profiles that would occur in the absence 
of a wall layer. The illustrations in the centre of the figure show at what station on the sphere, 
z1,z2, or z3, the velocity profiles are being evaluated. The sphere moves to the right at velocity CO. 
For both wall layers considered, the sphere radius is 99.5% of the free-lumen radius (Ao = 0.995). 
Othcr parameters as i n  figure 2. Notice that the ordinate scales difcr in each pancl. 

porosity. Owing to the high porosity associated with the curves in figure 3, the upper 
asymptotes all lie close to a normalized volume flow of 1. 

Figure 4 shows the profiles of the volumc-weighted normalized velocities, +fvI  /vo, 
in the wall layer, given by (5.18), and V;/Z!O in the lubrication layer, given by (5.19), 
which develop in the presence of a rigid sphere having a radius which is 99.5% of 
the free-lumen radius. The three panels on the left correspond to a dimensionless 
wall-layer thickness, 1 - a, of 20% while those on the right correspond to a thickness 
of 10%. In all panels, the solid curve is associated with a reciprocal dimensionless 
wall drag, a', of 0.001 ; the dashed curve corresponds to 6' = 0.01. The dotted curve 
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shows the velocity profiles which arise in the absence of a wall layer. These velocity 
profiles are shown at three different axial positions on the sphere which are indicated 
by the vertical bar on the illustrations between adjacent panels. 

As in the case without pellets, as d 2  decreases, the pointwise velocity in the 
wall layer is diminished and approaches a uniform profile with a boundary layer 
or transitional region developing at the interface between the wall and lubrication 
layers. The smaller the value of d2, the greater the retardation of fluid in the wall 
layer. At the interface between the wall and lubrication layers, the fluid velocity has 
a greater deficit to overcome in the gap to achieve sphere velocity than it would at 
the corresponding radial position without a wall layer. Consequently, the shear stress 
in the lubrication layer is elevated and the efective clearance between the sphere and 
the tube wall can be regarded as diminished relative to a system without a wall layer. 
The increased shear stress in the lubrication layer is accompanied by an increase in 
the magnitude of the pressure gradient in the axial direction. Although the axial 
pressure distribution is qualitatively unchanged in the presence of a wall layer (see 
Ozkaya 1986 and Skalak & Ozkaya 1987 for pressure distributions of rigid spheres 
in smooth-walled tubes), the larger variations in pressure result in enhanced drag on 
the sphere and an increased total pressure drop across the sphere. 

The enhanced resistance presented by the wall layer can be characterized by the 
ratio Ap/Qo. Figure 5(a) shows, as a function of d2, the relative pressure drop, Ap, 
necessary to achieve the same volume flow as in a system having the same tube 
diameter and sphere-to-tube diameter ratio without a wall layer. Since the apparent 
viscosity, papp, is proportional to the resistance defined in this way, the ordinate in 
figure 5(a) also represents the ratio papp/ (papp)r t  where (papp)rt  is the apparent viscosity 
of the equivalent system in rigid smooth-walled tubes. The pressure drop, Ap, is 
determined by integrating the Reynolds equation given by (5.24) over the length of 
the sphere. The corresponding pressure drop, (AP),.~, for the equivalent system without 
a wall layer is obtained from the Reynolds equation derived for rigid spheres in rigid 
smooth-walled tubes (Tozeren & Skalak 1978). Thus the ratio of apparent viscosities 
shown in figure 5(a) is equivalent to the ratio of these pressure drops where Ap and 
(Ap)r t  are both computed for a unit volume flow such that 

The normalized apparent viscosities shown in figure 5(a) correspond to the case when 
the sphere radius is 99.5% of the free-lumen radius. If a smaller sphere is considered, 
the effect of the wall layer on apparent viscosity is diminished. 

Analogous to figure 3 for the case without pellets, figure 5(b) shows the volume 
flow, as a function of d2, for spheres flowing in a tube lined with a porous wall 
layer relative to a system under the equivalent driving pressure having the same tube 
diameter and sphere-to-tube diameter ratio without a wall layer. The volume flow, 
Qo, was determined explicitly using (5.29). Taking a reference configuration attached 
to the tube wall, a similar expression was derived for ( Q O ) ~ ~ ,  the volume flow of a 
sphere flowing in a rigid smooth-walled tube. Both Qo and (Qo)rt were scaled to 
correspond to a unit pressure drop in their respective systems in order to determine 
the normalized volume flow shown in figure 5. Normalizing the volume flow in this 
way provides a quantitative measure of the influence of the wall layer on the total 
material volume conduction through the tube. 

Just as in the case without pellets, we anticipate a lower bound on the volume flow as 
that which would be obtained if the hydraulic resistivity in the wall layer were so large 
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FIGURE 5.  Normalized apparent viscosity (a) and volume flow ( b )  for a suspension of rigid spheres 
flowing in a tube lined with a porous wall layer as a function of the reciprocal dimensionless wall 
drag, a2, for four values of dimensionless wall-layer thickness, 1 - c( ( 5 ,  10, 15 and 20% of the 
tube radius). The apparent viscosity and total volume flow are normalized with respect to the 
corresponding values in the equivalent smooth-walled system having the same tube diameter and 
sphere-to-tube diameter ratio without a wall layer. The apparent viscosity is proportional to the 
resistance, Ap/Qo, and therefore the ordinate in (a)  also represents the relative driving pressure 
necessary to achieve the same volume flow as in the equivalent system without a wall layer. The 
relative volume flow per unit pressure drop in ( b )  expresses the total material volume conduction 
that would arise relative to the equivalent smooth-walled system under the same driving pressure. 
All parameters as in figure 4. 

as to make it effectively impermeable. In particular, in the limit as b2 tends toward 
zero, the hydraulic resistivity becomes infinite and flow in the wall layer stops alto- 
gether. In this extreme, the effective radius of the tube is reduced, by the factor a, to the 
radius of the free lumen and the sphere-to-tube diameter ratio degenerates from a&, to 
10. We may determine this lower bound by considering the ratio of the volume flow for 
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a sphere flowing in a smooth-walled tube having a diameter ratio of L o  to that which 
would arise with the same-sized sphere flowing under the same pressure drop in a tube 
having a diameter ratio of a&. For the wall-layer thicknesses considered in figure 5(b), 
we obtain the following lower-bound asymptotes : the dotted curve, corresponding to 
1 --a = 5% and 20 = 99.5%, approaches the limit of approximately 0.192 from above, 
the solid curve (1 - -a = 10%) approaches 0.104, the dash-dotted curve (1 - -a = 15%) 
approaches 0.066, and the dashed curve (1 - c( = 20%) approaches 0.044. In the same 
manner we may determine the upper limits on the apparent viscosity. For the curves 
shown in figure 5(a), we obtain the upper-bound asymptotes of 5.2, 9.6, 15.3, and 22.5 
for the dimensionless wall-layer thicknesses of 5, 10, 15, and 20%, respectively. 

In addition to the apparent viscosity, another important rheological parameter is 
the hematocrit. Since the mean velocity of the fluid is always less than the sphere 
velocity (see figure 4), the volume fraction of pellets in the tube, referred to as tube 
hematocrit, H T ,  will be less than the discharge hematocrit, H D ,  which corresponds to 
the volume fraction of pellets in the suspension after it has been collected. Figure 4 
illustrates the mechanism by which a wall layer causes a reduction in tube hematocrit 
relative to the equivalent system without a wall layer having the same discharge 
hematocrit. The diminished volume flow through the wall layer results in a greater 
disparity arising between the mean fluid velocity and the sphere velocity, producing 
a decreased tube hematocrit. For a fixed discharge hematocrit, the presence of a wall 
layer would therefore result in a decreased lineal density of spheres (number of spheres 
per unit length) relative to the equivalent system without a wall layer. It is easily 
shown that the ratio H T / H D  is equal to the ratio of mean velocity to pellet velocity 
(Ozkaya 1986). Since the dimensionless volume flow, Qo, is defined relative to sphere 
velocity, if we divide by the dimensionless cross-sectional area, we find H T / H D  = 2Qo. 
For a given discharge hematocrit, the tube hematocrit in porous-walled tubes relative 
to smooth-walled tubes is therefore given by 

where (HT)r t  and ( H D ) , ,  are, respectively, the tube and discharge hematocrits in 
smooth-walled tubes. Figure 6(b) reveals the influence of the wall layer on tube 
hematocrit by showing (6.2) as a function of 6* for several values of dimensionless wall- 
layer thickness, 1 - a. According to (6.2), figure 6(b) also represents the volume flow 
through a tube lined with a porous wall layer relative to the volume flow which would 
arise in a system having the same sphere velocity, tube diameter, and sphere-to-tube 
diameter ratio without a wall layer. Figure 6(a) shows, as a function of d2, the relative 
pressure drop across a sphere needed to achieve the same sphere velocity as a system 
having the same tube diameter and sphere-to-tube diameter ratio without a wall layer. 
In order to determine the normalized driving pressure shown in figure 6(a), both Ap 
and ( A P ) ~ ~  were non-dimensionalized in such a way as to correspond to a unit sphere 
velocity. The curves shown in figure 6 correspond to the case when the sphere radius is 
99.5% of the free-lumen radius. If a smaller sphere is considered, the effect of the wall 
layer on tube hematocrit is enhanced while its effect on pressure drop is diminished. 

Just as a lower bound on the normalized material volume conduction can be 
determined in the limit of zero flow in the wall layer, based on the same reasoning we 
can obtain lower-bound asymptotes on tube hematocrit for the curves in figure 6(b). 
For a sphere which is 99.5% of the free-lumen radius and dimensionless wall-layer 
thicknesses of 5, 10, 15, and 20%, the corresponding tube hematocrits can be reduced 
relative to smooth-walled tubes by at most the factors 0.962, 0.916, 0.865, and 0.809, 
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FIGURE 6. Normalized driving pressure (a) and tube hematocrit ( b )  for a suspension of rigid spheres 
flowing in a tube lined with a porous wall layer as a function of the reciprocal dimensionless wall 
drag, a2, for four values of dimensionless wall-layer thickness, 1 - tl ( 5 ,  10, 15 and 20% of the tube 
radius). The pressure drop over the sphere and the tube hematocrit are normalized with respect to 
the corresponding values in the equivalent smooth-walled system having the same tube diameter 
and sphere-to-tube diameter ratio without a wall layer. In particular, (a) represents the pressure 
drop necessary to achieve a unit sphere velocity relative to the corresponding value in the equivalent 
smooth-walled system and ( b )  represents the tube hematocrit necessary to achieve a given discharge 
hematocrit relative to the corresponding value in the equivalent smooth-walled system. Since the 
ratio of tube to discharge hematocrit is twice the dimensionless volume flow, the ordinate in (b)  
also expresses the relative total volume flow that arises per unit sphere velocity. All parameters as 
in figure 4. 

respectively. An upper bound on the driving pressure per unit sphere velocity can 
also be determined. The curves in figure 5(b), corresponding to the dimensionless 
wall-layer thicknesses of 5,  10, 15, and 20% asymptote, respectively, to 5.01, 8.83, 
13.21, and 18.22 from below. 
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7. Application to capillary blood flow 
The results of the preceding analysis have interesting implications for the rheology 

of blood in the microcirculation. In $1 we identified the glycocalyx, presented on 
the luminal surface of the capillary endothelial cells, as a structure which might 
exhibit similar behaviour to a biphasic wall layer. Although only limited data are 
available on material properties pertaining to the glycocalyx, a great deal is known 
about one of its possible constituents. In particular, the permeability and porosity 
of fibrinogen gels have been measured in vitro by Blomback & Okada (1982) and 
Blomback et al. (1989). Estimates of the elastic modulus of these gels were reported 
from measurements made by King et al. (1988) and Procyk & King (1990). 

Fibrin gel structures have been reported as containing more than 99% water 
(Blomback et al. 1989). This corresponds to a solid volume fraction, @, of around 
0.01 for this material. Solid volume fractions below 0.05 are not uncommon in 
biological materials. For example, Levick (1987) reported glycosaminoglycan volume 
fractions of a variety of interstitial tissues as ranging from 3.25 x lop4 (vitreous body) 
to 0.03 (femoral head cartilage). A similar range was reported for proteoglycan volume 
fractions. Interstitial materials containing low collagen-fibril volume fractions were 
reported as having high void volumes. Since the glycocalyx is composed primarily 
of glycoproteins and proteoglycans, and is unlikely to contain collagen fibrils, we 
assume its porosity to be consistent with the value reported by Blomback et al. (1989) 
for fibrinogen gels and take 4f = 0.99. Assuming that plasma proteins are not likely 
to be excluded from the glycocalyx, we take the viscosity of the fluid phase in the 
wall layer to be nearly equal to that of the plasma in the free lumen (i.e. pf = p’) 
and thus, r]  = 0.98. All of the figures presented here correspond to +f = 0.99 and 
y = 0.98. 

Blomback & Okada (1982) and Blomback et al. (1989) studied the structure of 
fibrin gels by confocal laser microscopy and conducted liquid permeation studies 
to measure the permeability of the gels as a function of clotting time and fibrin 
concentration. They computed Darcy’s coefficient, K D ,  by measuring the volume flow, 
Q, of a liquid through a gel column of height L, and cross-sectional area A,, under 
an imposed pressure differential, Ap. For a fluid having viscosity p, they computed 
Darcy’s constant according to 
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By comparing Darcy’s law for fluid flow in a porous medium with the constitutive 
equations from mixture theory which we have employed, we obtain a relationship 
between the permeability or hydraulic conductivity, k ,  and Darcy’s constant, KD, given 
by k = KDqbf /pf .  Since the permeability has been shown to be inversely proportional 
to the hydraulic resistivity, K ,  according to k = (@)’ /K (Lai & Mow 1980), we 
obtain the relationship between Darcy’s constant and 6’ given by 

K D  = +fR262 (7.2) 

where R is the characteristic radius of the tube. From their measurements of Darcy’s 
constant, Blomback & Okada (1982) found KD in fibrin gels to range between lo-’’ 
and lo-* cm’. For a fibrin gel having a fluid volume fraction of 0.99 and a fluid 
phase corresponding to blood plasma with a viscosity of 0.012 dyn s cm-’, the 
hydraulic conductivity ranges between 8.3 x and 8.3 x lo-’ cm4(dyn s)-’. For 
a characteristic radius, R, corresponding to a 4 pm capillary, the reciprocal of the 
dimensionless wall drag ranges between 6 x lop4 and 6 x lo-’. According to Blomback 
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& Okada (1982), Darcy's constant (and thus S2) was seen to decrease exponentially 
with increasing fibrin concentration, increasing ionic strength, and increasing pH of 
the gel. 

Levick (1987) reported values of hydraulic conductivity, k ,  for various tissues and 
interstitial materials. For the sake of comparison with the range of permeabilities we 
will be using for the endothelial-cell glycocalyx, we consider some of the materials 
which Levick reported. In particular, he included two values for the hydraulic 
conductivity of the mesentery as being 1.9 x lo-'' and 3.1 x lo-" cm4(dyn s)-'. 
The hydraulic conductivity associated with the vitreous body, which was closest 
to the range corresponding to fibrinogen gels, was reported as being between 2.1 
and 4.2 x lop9 cm4(dyn s)-'. By comparison, the permeability of the path across 
the capillary wall is between one and two orders of magnitude lower than the 
permeability of the mesentery (Levick 1987) which in turn is between one and three 
orders of magnitude lower than the permeability of fibrinogen gels (Blomback & 
Okada 1982; Blomback et al. 1989). 

Despite the relatively high hydraulic conductivity of fibrinogen gels, a material such 
as this can significantly retard flow in porous-walled tubes. According to figure 3, 
for d 2  = 0.001 and a wall-layer thickness which is 10% of the tube radius (solid 
curve), we find the volume flow is diminished in pellet-free plasma to 73% of the 
Poiseuille-flow value in a rigid smooth-walled tube under the same pressure drop. 
Doubling the thickness of the wall layer reduces the volume flow to 46% of the 
Poiseuille-flow value. If a rigid sphere is introduced that is 99.5% of the free-lumen 
radius, according to figure 5(b), for d2  = 0.001 and a wall-layer thickness which is 
10% of the tube radius (solid curve), the total volume flow is diminished to 37% of 
the value in the equivalent system under the same pressure drop and having the same 
tube diameter and sphere-to-tube diameter ratio without a wall layer. Doubling the 
wall-layer thickness reduces the total volume flow to 18% of the value in smooth- 
walled tubes. We summarize these results for the case with spheres in figure 7 by 
plotting the apparent viscosity and tube hematocrit, relative to smooth-walled tubes, 
as a function of the dimensionless wall-layer thickness for two values of d2. In both (a) 
and (b) ,  the solid curve corresponds to d2  = 0.001 and the dashed curve corresponds 
to d2  = 0.01. The solid curve, therefore, lies near the lower bound on the permeability 
of fibrinogen gels while the dashed curve lies near the upper bound. 

The most pronounced effect of the porous wall layer is the marked increase in 
apparent viscosity relative to spheres flowing in smooth-walled tubes. In the range 
of permeabilities associated with fibrinogen gels, the presence of a 15% wall-layer 
thickness results in a two- to four-fold increase in apparent viscosity when a sphere, 
which is 99.5% of the free-lumen radius, is flowing in the free lumen. For smaller 
spheres, the increased resistance is less pronounced. If a sphere which is only 80% 
of the free-lumen radius is considered, the apparent viscosity is elevated only 1.5 
to 2 times over the value in smooth-walled tubes having a sphere-to-tube diameter 
ratio of 68% (a& = 0.85 x 0.8). Despite the model's inherently crude geometric 
approximations of capillary blood flow, for closely fitting spheres in the free lumen 
the increase in apparent viscosity which the model predicts is consistent with the 
four-fold increase Pries et al. (1994) predicted in 10 pm capillaries. 

On the other hand, owing to the simplified axisymmetric geometry considered here, 
the model can have only a modest effect on capillary tube hematocrit. In the range 
of permeabilities associated with fibrinogen gels, the presence of a wall layer which is 
15% of the tube radius results in a reduction in tube hematocrit of only 4 to 12% for 
spheres which are 99.5% of the free-lumen radius. If a smaller sphere is considered, 
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FIGURE 7. Normalized apparent viscosity (a) and tube hematocrit ( b )  for a suspension of rigid 
spheres flowing in a tube lined with a porous wall layer as a function of the dimensionless wall-layer 
thickness corresponding to two values of a2. The apparent viscosity and tube hematocrit are 
normalized with respect to the corresponding values in the equivalent smooth-walled system having 
the same tube diameter and sphere-to-tube diameter ratio without a wall layer. The smaller value 
of h2 (solid curves) is near the lower bound on the permeability of fibrinogen gels and the larger 
value (dashed curves) is near the upper bound. All parameters as in figure 4. 

which for example is 80% of the free-lumen radius, a 9 to 18% reduction in tube 
hematocrit is observed relative to an equivalent smooth-walled system. 

Desjardins & Duling (1990) conducted in v i m  microperfusions in capillaries with 
enzymes which digested macromolecules in the glycocalyx to study the effect this 
structure might have on capillary tube hematocrit. In particular, treatment with 
heparinase resulted in at least a two-fold increase in tube hematocrit. They proposed 
that the glycocalyx might act to retard plasma and thereby increase the disparity 
between the red-cell and mean blood velocities. Heparinase treatment presumably 
cleaved the glycocalyx and removed the extracellular matrix which thereby reduced 
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or removed the retarded plasma layer. This hypothesis is as much dependent upon 
the shapes which red cells can assume in capillaries as it is upon the size and structure 
of the wall layer. This analysis can only begin to address the second of these two 
factors. For even in the most extreme case, if flow were to stop altogether in the wall 
layer, the disparity between mean blood velocity and sphere velocity remains small 
for clearances less than 20% (observe that the total change in relative tube hematocrit 
for the dashed curve in figure 6(b)  is less than 20%). It is noteworthy that even for 
a relatively permeable material such as fibrinogen, the diminution in tube hematocrit 
predicted by the model for a wall layer which is 20% of the tube radius represents 
40 to 90% of the maximum possible reduction for the axisymmetric configuration 
considered here. It is conceivable that for sufficiently asymmetric cell shapes, which 
are associated with inherently lower ratios of mean blood velocity to red-cell velocity, 
the presence of a wall layer could have a greater influence on capillary tube hematocrit 
than it does with the simple axisymmetric pellets that this analysis addresses. Thus, 
the modest reduction in tube hematocrit predicted by the model for small clearances 
is fundamentally limited by the geometric constraints imposed on the system. 

Aside from complicated geometries, other factors not considered in this analysis 
might play an important role in influencing the apparent viscosity resulting from 
a porous wall layer. For one thing, we do not expect the approximation of a 
linearly elastic solid phase in the wall layer to accurately approximate the elastic 
behaviour of the glycocalyx, especially in the light of the large radial deformations 
that the glycocalyx might experience on the passing of very tightly fitting red cells 
through the smallest capillaries. In consideration of the elastic properties of fibrinogen 
gels (King et al. 1988; Procyk & King 1990), for capillary diameters smaller than 
red-cell diameters (below 8 pm), we anticipate considerable radial deformation of the 
glycocalyx resulting in significant reorganization of the solid matrix. We have therefore 
limited our attention to pellets which were constrained to maximum diameters strictly 
less than the diameter of the free lumen. It should be pointed out, however, that, 
under physiological flow conditions, the solid-phase displacements shown in figure 2(b) 
experience axial strains on the order of 50% for a wall layer hydrated in plasma having 
the elastic properties and permeability of fibrinogen gels. Such large deformations, 
while not unusual for biological materials, certainly lie outside the range of the 
infinitesimal-strain theory used here. Furthermore, the permeability, and thus the 
hydraulic resistivity, of similar biological materials tends to be quite sensitive to the 
normal strain (Mow et al. 1980; Lai & Mow 1980). Therefore, significant variations 
in material properties might accompany large deformations of the glycocalyx. In this 
preliminary analysis, we have limited our attention to a biphasic mixture. The red 
cell and the glycocalyx, however, are both known to be electronegative. A triphasic 
mixture model could incorporate an ionic phase into an analysis which studies the 
effect of charge interactions within the glycocalyx. From a purely mechanical point 
of view, this charge interaction might result in a repulsive force strong enough to 
induce radial deformations of the glycocalyx and/or red cell. This in turn could 
increase the clearance between the red cell and wall layer and reduce the drag 
on the cell. A larger lubrication layer (accompanied by a diminished wall-layer 
thickness) might be offset to some extent by the increased drag in the wall layer 
which could accompany radial deformation of the glycocalyx. Finally, in the analysis 
presented here, only viscous forces in the fluid and drag-interaction forces in the 
wall layer must be overcome in order to drive the pellets through the tube. In 
fact, the driving pressure necessary to force tightly fitting red cells along capillaries 
must additionally overcome the restoring forces both in the red-cell membrane and 
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imposed by the solid matrix comprising the glycocalyx on the passing cell. Models 
of red-cell deformation under pressure-driven flow in cylindrical tubes abound in the 
literature (Lighthill 1968; Barnard et al. 1968; Skalak & Ozkaya 1987; Skalak et 
al. 1989; Secomb et al. 1986; Secomb 1991, 1995). These models all conclude that 
the stiffness of the red-cell membrane and the deformability of that structure are of 
fundamental importance in the resistance to blood flow in the microcirculation. Thus, 
a truly descriptive model of capillary rheology must incorporate the additional fluid- 
structure interactions which arise in the presence of a deformable pellet. Furthermore, 
a realistic model of the red cell might also include the erythrocyte glycocalyx modelled 
in the same manner in which it was handled here for the endothelial cell. Geometric 
variation, surface-charge interactions, strain-dependent material properties of the 
glycocalyx, and large deformations of both the glycocalyx and red cell are likely 
to play a major role in the rheological behaviour of the system as a whole. A 
finite-deformation theory for the wall layer which includes this additional physics 
would result in a complex system of coupled nonlinear partial-differential equations 
which are analytically intractable and require numerical solution. It is hoped that the 
model presented here, while remaining simple enough to admit closed-form solutions, 
still contains sufficient detail to elucidate some of the salient aspects associated with 
hydroelastic interactions within the wall layer arising from a pressure-driven axial 
flow. 
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